Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals.

نویسندگان

  • Alyson Swimm
  • Bettina Bommarius
  • Yue Li
  • David Cheng
  • Patrick Reeves
  • Melanie Sherman
  • Darren Veach
  • William Bornmann
  • Daniel Kalman
چکیده

Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food and induce protrusion of actin-rich membrane pedestals beneath themselves upon attachment to intestinal epithelia. EPEC then causes intestinal inflammation, diarrhea, and, among children, death. Here, we show that EPEC uses multiple tyrosine kinases for formation of pedestals, each of which is sufficient but not necessary. In particular, we show that Abl and Arg, members of the Abl family of tyrosine kinases, localize and are activated in pedestals. We also show that pyrido[2,3-d]pyrimidine (PD) compounds, which inhibit Abl, Arg, and related kinases, block pedestal formation. Finally, we show that Abl and Arg are sufficient for pedestal formation in the absence of other tyrosine kinase activity, but they are not necessary. Our results suggest that additional kinases that are sensitive to inhibition by PD also can suffice. Together, these results suggest that EPEC has evolved a mechanism to use any of several functionally redundant tyrosine kinases during pathogenesis, perhaps facilitating its capacity to infect different cell types. Moreover, PD compounds are being developed to treat cancers caused by dysregulated Abl. Our results raise the possibility that PD may be useful in treating EPEC infections, and because PD affects host and not bacterium, selecting resistant strains may be far less likely than with conventional antibiotics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crk Adaptors Negatively Regulate Actin Polymerization in Pedestals Formed by Enteropathogenic Escherichia coli (EPEC) by Binding to Tir Effector

Infections by enteropathogenic Escherichia coli (EPEC) cause diarrhea linked to high infant mortality in developing countries. EPEC adheres to epithelial cells and induces the formation of actin pedestals. Actin polymerization is driven fundamentally through signaling mediated by Tir bacterial effector protein, which inserts in the plasma membrane of the infected cell. Tir binds Nck adaptor pro...

متن کامل

Role for CD2AP and other endocytosis-associated proteins in enteropathogenic Escherichia coli pedestal formation.

Enteropathogenic Escherichia coli (EPEC) strains are extracellular pathogens that generate actin-rich structures (pedestals) beneath the adherent bacteria as part of their virulence strategy. Pedestals are hallmarks of EPEC infections, and their efficient formation in vitro routinely requires phosphorylation of the EPEC effector protein Tir at tyrosine 474 (Y474). This phosphorylation results i...

متن کامل

Cytosolic Extract Induces Tir Translocation and Pedestals in EPEC-Infected Red Blood Cells

Enteropathogenic Escherichia coli (EPEC) are deadly contaminants in water and food, and induce protrusion of actin-filled membranous pedestals beneath themselves upon attachment to intestinal epithelia. Pedestal formation requires clustering of Tir and subsequent recruitment of cellular tyrosine kinases including Abl, Arg, and Etk as well as signaling molecules Nck, N-WASP, and Arp2/3 complex. ...

متن کامل

Agents that inhibit Rho, Rac, and Cdc42 do not block formation of actin pedestals in HeLa cells infected with enteropathogenic Escherichia coli.

Enteropathogenic Escherichia coli (EPEC) induces formation of actin pedestals in infected host cells. Agents that inhibit the activity of Rho, Rac, and Cdc42, including Clostridium difficile toxin B (ToxB), compactin, and dominant negative Rho, Rac, and Cdc42, did not inhibit formation of actin pedestals. In contrast, treatment of HeLa cells with ToxB inhibited EPEC invasion. Thus, Rho, Rac, an...

متن کامل

Amino acid residues within enterohemorrhagic Escherichia coli O157:H7 Tir involved in phosphorylation, alpha-actinin recruitment, and Nck-independent pedestal formation.

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 and enteropathogenic E. coli (EPEC) adherence to epithelial cells results in the formation of actin pedestals. Pedestal formation requires the bacterial protein Tir, which is inserted into the epithelial cell plasma membrane by the type III secretion system. EPEC and EHEC use different Tir-based mechanisms for pedestal formation, and the EPEC Ti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 8  شماره 

صفحات  -

تاریخ انتشار 2004